Note
Go to the end to download the full example code.
Dealias Radial Velocities Using Xradar and Py-ART#
An example which uses xradar and Py-ART to dealias radial velocities.
# Author: Max Grover (mgrover@anl.gov)
# License: BSD 3 clause
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import xradar as xd
import pyart
from pyart.testing import get_test_data
# Locate the test data and read in using xradar
filename = get_test_data("swx_20120520_0641.nc")
tree = xd.io.open_cfradial1_datatree(filename)
# Give the tree Py-ART radar methods
radar = tree.pyart.to_radar()
# Determine the nyquist velocity using the maximum radial velocity from the first sweep
nyq = radar["sweep_0"]["mean_doppler_velocity"].max().values
# Set the nyquist to what we captured above
# Calculate the velocity texture
vel_texture = pyart.retrieve.calculate_velocity_texture(
radar, vel_field="mean_doppler_velocity", nyq=nyq
)
radar.add_field("velocity_texture", vel_texture, replace_existing=True)
Visualize our velocity texture field Let’s use the RadarMapDisplay to visualize the texture field
fig = plt.figure(figsize=[8, 8])
display = pyart.graph.RadarMapDisplay(radar)
display.plot_ppi_map(
"velocity_texture",
sweep=2,
resolution="50m",
vmin=0,
vmax=10,
projection=ccrs.PlateCarree(),
cmap="pyart_balance",
)
plt.show()
Determine a Velocity Texture Threshold Value
We can use the xradar/xarray plotting functionality here
radar["sweep_0"]["velocity_texture"].plot.hist()
plt.show()
Apply a Gatefilter Mask
We now apply this threshold, along with a reflectivity threshold, and make use of the region-based dealiasing algorithm
# Configure the gatefilter
gatefilter = pyart.filters.GateFilter(radar)
gatefilter.exclude_above("velocity_texture", 4)
gatefilter.exclude_below("corrected_reflectivity_horizontal", 0)
# At this point, we can simply used dealias_region_based to dealias the velocities
# and then add the new field to the radar.
velocity_dealiased = pyart.correct.dealias_region_based(
radar,
vel_field="mean_doppler_velocity",
nyquist_vel=nyq,
centered=True,
gatefilter=gatefilter,
)
radar.add_field("corrected_velocity", velocity_dealiased, replace_existing=True)
Visualize the Cleaned Radial Velocities
We can visualize the uncorrected and corrected radial velocity fields
fig = plt.figure(figsize=(14, 5))
display = pyart.graph.RadarMapDisplay(radar)
ax1 = plt.subplot(121)
display.plot_ppi(
"mean_doppler_velocity",
cmap="twilight_shifted",
vmin=-40,
vmax=40,
colorbar_label="Uncorrected Radial Velocity (m/s)",
ax=ax1,
)
ax2 = plt.subplot(122)
display.plot_ppi(
"corrected_velocity",
cmap="twilight_shifted",
vmin=-40,
vmax=40,
colorbar_label="Corrected Radial Velocity (m/s)",
ax=ax2,
)
plt.show()
Total running time of the script: (0 minutes 9.154 seconds)