Hydrometeor Classification with Custom Frequency Settings#

This script shows how to use hydrometeor classification for X-band radar data. We are reading radar data, plotting some variables of interest and applying the classification to identify types of precipitation.

Note

The script initially attempts hydrometeor classification without specific radar frequency information for band selection.

  • 6.0 Deg. 2022-03-14T03:00:16Z  Equivalent reflectivity factor,  6.0 Deg. 2022-03-14T03:00:16Z  Corrected log differential reflectivity hv,  6.0 Deg. 2022-03-14T03:00:16Z  Specific differential phase hv
  • 6.0 Deg. 2022-03-14T03:00:16Z  Corrected equivalent reflectivity factor,  6.0 Deg. 2022-03-14T03:00:16Z  Radar echo classification
{'nyquist_velocity': {'long_name': 'Nyquist velocity', 'units': 'm/s', 'standard_name': 'nyquist_velocity', 'data': masked_array(data=[15.9, 15.9, 15.9, ..., 15.9, 15.9, 15.9],
             mask=False,
       fill_value=1e+20)}}

import matplotlib.pyplot as plt
import numpy as np
from open_radar_data import DATASETS

import pyart

filename = DATASETS.fetch("gucxprecipradarcmacppiS2.c1.20220314.025840.nc")
radar = pyart.io.read_cfradial(filename)

figure = plt.figure(figsize=(15, 4))

ax1 = plt.subplot(1, 3, 1)
display = pyart.graph.RadarDisplay(radar)
ax1 = display.plot("DBZ", vmin=0, vmax=50)  # DBZ corrected_reflectivity
plt.xlim(-20, 20)
plt.ylim(-20, 20)

ax2 = plt.subplot(1, 3, 2)
ax2 = display.plot("corrected_differential_reflectivity", cmap="pyart_Carbone42")  # ZDR
plt.xlim(-20, 20)
plt.ylim(-20, 20)

ax3 = plt.subplot(1, 3, 3)
ax3 = display.plot("corrected_specific_diff_phase", cmap="pyart_Carbone42")  # KDP
plt.xlim(-20, 20)

# ### When instrument parameters does not have radar frequency info.

print(radar.instrument_parameters)


# This shows an issue where radar frequency information is missing. Without this hydrometeor classification will default to C-band.

# Get classification
hydromet_class = pyart.retrieve.hydroclass_semisupervised(
    radar,
    refl_field="corrected_reflectivity",
    zdr_field="corrected_differential_reflectivity",
    kdp_field="filtered_corrected_specific_diff_phase",
    rhv_field="RHOHV",
    temp_field="sounding_temperature",
)["hydro"]

radar.add_field("hydro_classification", hydromet_class, replace_existing=True)


# Use `radar_freq` parameters
# To address this issue, radar frequency information can be supplied to the function with `radar_freq` parameter.


# Get classification
hydromet_class = pyart.retrieve.hydroclass_semisupervised(
    radar,
    refl_field="corrected_reflectivity",
    zdr_field="corrected_differential_reflectivity",
    kdp_field="filtered_corrected_specific_diff_phase",
    rhv_field="RHOHV",
    temp_field="sounding_temperature",
    radar_freq=9.2e9,
)["hydro"]

radar.add_field("hydro_classification", hydromet_class, replace_existing=True)


# Add radar frequency to the radar object
# Incorporating radar frequency into the radar object enhances processing pipeline.

# Add X-band frequency information to radar.instrument_parameters
radar.instrument_parameters["frequency"] = {
    "long_name": "Radar frequency",
    "units": "Hz",
    "data": [9.2e9],
}

radar.instrument_parameters


# Let's run the classification again and the warning should change telling the radar frequency from instrument parameters is used.


hydromet_class = pyart.retrieve.hydroclass_semisupervised(
    radar,
    refl_field="corrected_reflectivity",
    zdr_field="corrected_differential_reflectivity",
    kdp_field="filtered_corrected_specific_diff_phase",
    rhv_field="RHOHV",
    temp_field="sounding_temperature",
    radar_freq=9.2e9,
)["hydro"]

radar.add_field("hydro_classification", hydromet_class, replace_existing=True)


# Note that the frequency used here is from the radar object, not the user supplied.


# plotting

import matplotlib.colors as colors

hid_colors = [
    "White",
    "LightBlue",
    "MediumBlue",
    "DarkOrange",
    "LightPink",
    "Cyan",
    "DarkGray",
    "Lime",
    "Yellow",
    "Red",
]
cmaphid = colors.ListedColormap(hid_colors)
cmapmeth = colors.ListedColormap(hid_colors[0:6])
cmapmeth_trop = colors.ListedColormap(hid_colors[0:7])


def adjust_fhc_colorbar_for_pyart(cb):
    cb.set_ticks(np.arange(1.4, 9, 0.9))
    cb.ax.set_yticklabels(
        [
            "Aggregates",
            "Ice Crystals",
            "Light rain",
            "Rain",
            "Vertical Ice",
            "Wet snow",
            "HD Graupel",
            "Melting hail",
            "Dry hail or high-density graupel",
        ]
    )
    cb.ax.set_ylabel("")
    cb.ax.tick_params(length=0)
    return cb


def adjust_meth_colorbar_for_pyart(cb, tropical=False):
    if not tropical:
        cb.set_ticks(np.arange(1.25, 5, 0.833))
        cb.ax.set_yticklabels(
            ["R(Kdp, Zdr)", "R(Kdp)", "R(Z, Zdr)", "R(Z)", "R(Zrain)"]
        )
    else:
        cb.set_ticks(np.arange(1.3, 6, 0.85))
        cb.ax.set_yticklabels(
            ["R(Kdp, Zdr)", "R(Kdp)", "R(Z, Zdr)", "R(Z_all)", "R(Z_c)", "R(Z_s)"]
        )
    cb.ax.set_ylabel("")
    cb.ax.tick_params(length=0)
    return cb


def two_panel_plot(
    radar,
    sweep=0,
    var1="corrected_reflectivity",
    vmin1=0,
    vmax1=65,
    cmap1="RdYlBu_r",
    units1="dBZ",
    var2="corrected_differential_reflectivity",
    vmin2=-5,
    vmax2=5,
    cmap2="RdYlBu_r",
    units2="dB",
    return_flag=False,
    xlim=[-150, 150],
    ylim=[-150, 150],
):
    display = pyart.graph.RadarDisplay(radar)
    fig = plt.figure(figsize=(13, 5))
    ax1 = fig.add_subplot(121)
    display.plot_ppi(
        var1,
        sweep=sweep,
        vmin=vmin1,
        vmax=vmax1,
        cmap=cmap1,
        colorbar_label=units1,
        mask_outside=True,
    )
    display.set_limits(xlim=xlim, ylim=ylim)
    ax2 = fig.add_subplot(122)
    display.plot_ppi(
        var2,
        sweep=sweep,
        vmin=vmin2,
        vmax=vmax2,
        cmap=cmap2,
        colorbar_label=units2,
        mask_outside=True,
    )
    display.set_limits(xlim=xlim, ylim=ylim)
    if return_flag:
        return fig, ax1, ax2, display


lim = [-20, 20]
fig, ax1, ax2, display = two_panel_plot(
    radar,
    sweep=0,
    var1="corrected_reflectivity",
    var2="hydro_classification",
    vmin2=0,
    vmax2=10,
    cmap2=cmaphid,
    units2="",
    return_flag=True,
    xlim=lim,
    ylim=lim,
)
display.cbs[1] = adjust_fhc_colorbar_for_pyart(display.cbs[1])

Total running time of the script: (0 minutes 10.925 seconds)

Gallery generated by Sphinx-Gallery